
SEMINAR NASIONAL CORISINDO  547 

 

UNIVERSITAS BUMIGORA – 12 SEPTEMBER 2025 

Automatic Daily Scheduling System Using Cron Jobs  

for Handicraft Business Management 
 

 

Lidia Terecia, Sandy Kosasi, David 

 

STMIK Pontianak, Pontianak, Indonesia 
 

Correspondence : e-mail: lidiatereciaa@gmail.com  

 

 

Abstract 

 
Ensuring accurate stock information remains a challenge for handicraft business managers when 

sales data from physical stores and e-commerce platforms are not updated simultaneously. Previous studies 

have addressed stock synchronization but have yet to employ scheduling mechanisms for delivering daily 

stock summaries integrated with sales data from both sources. This study developed an automated 

scheduling system using a cron job to record and summarize daily stock movements, utilizing Shopee API 

integration to ensure data consistency between the physical store and the online platform. The Reorder 

Point concept was applied to determine restocking thresholds, while the Twilio API was used to send stock 

summaries to managers via WhatsApp. The system was implemented using the Extreme Programming 

method to accelerate adaptation to user requirements. The results indicated that the system consistently 

provided daily stock reports, maintained data consistency across platforms, and supported procurement 

decision-making. This approach offers a novelty by combining automated stock synchronization and 

scheduled stock report distribution within a single integrated system. 

  

Keywords: Cron Job, Shopee API, Reorder Point, Twilio API, Extreme Programming. 
  

 

1. Introduction 

Accurate inventory information is a cornerstone of operational reliability in omnichannel retail. 

Stock data that is not synchronized across platforms can undermine the integrity of supply chains and 

decision-making processes. Stock discrepancies between physical stores and e-commerce channels can 

result in customer dissatisfaction and elevated order cancellation rates [1]. This often disrupts the customer 

experience and directly affects merchant ratings on online marketplaces [2]. To prevent these issues, web-

based stock management systems offer centralized access for inventory control while reducing the 

dependency on manual input [3]. 

However, not all solutions address the need for proactive restocking logic. This study proposes an 

integrated mechanism that unifies stock synchronization, low-stock alerts, and scheduled reporting into one 

system, offering a more comprehensive solution than previous approaches. With Shopee being one of the 

most widely used marketplaces in Indonesia, integrating its merchant API becomes essential to ensure stock 

consistency across platforms. [4]. API integration facilitates bidirectional data flow between the internal 

system and the external marketplace, preventing mismatches caused by asynchronous updates [5]. 

Furthermore, the system logs every inventory mutation, providing a detailed historical record of item inflow 

and outflow. [6]. 

To automate daily tasks, a cron job mechanism is implemented for generating scheduled stock 

summaries. These tasks run periodically without requiring human input, allowing business owners to 

receive timely reports [7]. Automated scheduling enhances consistency in reporting and minimizes the risk 

of delays in identifying critical inventory issues [8]. The system adopts the Reorder Point (ROP) method, 

a quantitative inventory control strategy that calculates when restocking should occur based on historical 

sales and lead time [9]. By incorporating ROP into the system logic, product availability can be maintained 

with greater accuracy and minimal manual oversight. Once stock levels reach a predefined minimum 

threshold, the system triggers an automated alert via the Twilio API, which delivers messages to managers 

or suppliers through WhatsApp [10]. This notification mechanism ensures timely procurement without 

relying on staff to constantly monitor inventory. 

 

2. Research Method 

mailto:lidiatereciaa@gmail.com


SEMINAR NASIONAL CORISINDO  548 

 

UNIVERSITAS BUMIGORA – 12 SEPTEMBER 2025 

This research adopts the Extreme Programming (XP) approach, which emphasizes iterative 

development and rapid responsiveness to user feedback. XP enables frequent delivery of working software, 

ensuring that user needs are addressed as early as possible in the development cycle [11]. The development 

process was divided into four core stages: planning, design, coding, and testing, each of which plays a 

crucial role in aligning the system with actual user workflows. [12]. This structured methodology fosters 

agility while maintaining system integrity across iterations. [13]. In the design phase, the Unified Modeling 

Language (UML) was employed to visualize the system architecture, component interactions, and user 

flows. Diagrams such as use cases, sequences, and activity charts were developed to guide implementation. 

[14]. To validate system reliability, white-box testing was performed using the basis path technique. This 

method ensures that every logical condition and execution path in the system is exercised and verified. [15]. 

 

 
 

Figure 1. Research Flow 

 

The system development process begins with problem identification, aiming to understand user 

needs and existing operational challenges. Subsequently, research objectives are clearly defined to guide 

data collection through methods such as observation, interviews, or literature review. The collected data 

supports system design, including UML diagrams, ERD construction, and database schema planning to 

ensure structural integrity. A suitable development methodology is then applied, followed by white-box 

testing; based on the results, the system is either deployed or returned to the design phase for refinement. 

 

3. Results and Discussion 

 While many stock management systems emphasize synchronization and manual stock input, the 

present study introduces a scheduled automation mechanism that transcends traditional implementations. 

By leveraging the server-level cron job functionality, this system shifts from reactive stock monitoring to a 

proactive, time-based process that operates independently of user initiation. The cron job not only schedules 

report generation but also synchronizes stock mutation logs with reorder point evaluations, a layered 

interaction rarely seen in previous works. This approach provides a novel convergence of time-based 

automation, inventory analysis, and real-time notification, thereby transforming routine stock management 

into an anticipatory decision-support system. Based on the analysis and research objectives, the workflow 

and system interactions are illustrated in the use case diagrams presented in Figure 1. 

 Figure 2(a) Cron Job Scheduling Flow          Figure 2(b) Automated Reporting Process.  

Figure 2(a) shows the scheduling and triggering sequence of the cron job, which determines when 

the system initiates its operations and ensures that the process is executed only at predetermined times via 

specific triggers. This mechanism ensures that task execution occurs in a consistent and structured manner 

according to the defined cycle. Figure 2(b) illustrates the automated daily reporting process, which 



SEMINAR NASIONAL CORISINDO  549 

 

UNIVERSITAS BUMIGORA – 12 SEPTEMBER 2025 

commences once the cron job is activated, starting from data processing, followed by report generation, 

and concluding with delivery via email. This workflow guarantees that processed results are delivered 

promptly without requiring manual intervention, thereby linking both processes to maintain seamless 

system operation. Furthermore, the scheduled mechanism serves as a reference point for implementing the 

Reorder Point (ROP) calculation to determine the optimal timing for inventory replenishment. The ROP 

calculation is defined as follows: 

 

 ROP = (d x L) + SS (1) 

In this equation: 

• d = average daily sales  

• 𝐿 = lead time in days  

• SS = safety stock 

The Reorder Point method facilitates the determination of the optimal timing for placing replenishment 

orders based on the minimum safe inventory threshold. This calculation is derived from historical daily 

sales data, estimated supplier lead times, and predefined safety stock parameters. As illustrated in Figure 2, 

the ROP calculation is integrated with an API-based notification mechanism, which automatically transmits 

alerts to management when inventory levels reach the reorder threshold. Distinctively, this mechanism 

operates in tandem with a time-triggered automation process, wherein the ROP evaluation executes at 

scheduled intervals without manual intervention, ensuring that alerts correspond accurately to the latest 

inventory status recorded in the stock mutation log. 

Figure 3. Flowchart of Twilio API Notification  

 

As depicted in Figure 3, the process illustrates order placement via the Notification List page, 

which is integrated with the Twilio API. Once the user confirms the order and the data is validated, the 

system transmits a request to the server for processing. The back-end component subsequently invokes the 

Twilio API to dispatch a confirmation message directly to the supplier. Then it returns a success response 

to the front-end interface, thereby updating the order status. The automation of this sequence reduces delays 

typically associated with manual supplier communication. At the same time, the integration within a single 

notification interface ensures that message delivery, order verification, and stock threshold validation occur 

without navigating multiple system modules. 

In addition, the system incorporates an automatic stock recap that delivers daily inventory 

summaries via WhatsApp, ensuring managers can monitor stock conditions without manual checking. A 

stock mutation log is also maintained to record detailed inbound and outbound transactions, which supports 

analysis of inventory movement and sales patterns. By combining notification, daily recap, and mutation 

history in one mechanism, this stage highlights the novelty of the research since earlier works only focused 

on synchronization or single-feature solutions. This comprehensive approach forms the basis for connecting 

the notification process with subsequent synchronization activities. As shown in Figure 3, the integration 

of the Shopee API enables automated synchronization of stock and order data between the internal system 



SEMINAR NASIONAL CORISINDO  550 

 

UNIVERSITAS BUMIGORA – 12 SEPTEMBER 2025 

and the Shopee platform, ensuring that both environments consistently reflect the same inventory and 

transaction information.  

Figure 4. Use Case Diagram of Shopee API Integration 

 

As shown in Figure 4, the Shopee API integration enables real-time stock updates as soon as 

incoming goods data are processed. This synchronization maintains data consistency between the internal 

system and the sales platform, thereby preventing discrepancies in stock quantities. The workflow also 

facilitates the seamless distribution of product information to the marketplace, ensuring that inventory 

management remains organized and easily monitored. Following the Shopee API integration process, the 

system records the receipt of incoming goods while simultaneously updating stock levels automatically, as 

demonstrated in Figure 5. 

Figure 5. Pseudocode for Incoming Goods 

 

As illustrated in Figure 5, the testing of the incoming goods pseudocode was conducted to ensure that 

the system is capable of accurately updating stock levels and recording item data. Utilizing the white-box 

testing approach with basis path testing, four independent execution paths were identified to evaluate 

various stock conditions, ranging from normal inventory levels to those meeting the criteria for both Safety 

Stock and the Reorder Point (ROP). This testing ensures that the generated reorder data is accurate and 

reliable. Subsequently, as shown in Figure 6, the system selects items whose stock levels are approaching 

the minimum threshold and displays them in the low-stock notification list. 

Figure 6. Pseudocode for Notification List 



SEMINAR NASIONAL CORISINDO  551 

 

UNIVERSITAS BUMIGORA – 12 SEPTEMBER 2025 

As depicted in Figure 6, the process begins with retrieving all item data from the database, followed 

by evaluating two stock conditions. Four distinct logical paths emerge based on the combinations of the 

conditions stock ≤ safety stock, stock≤safety stock, and stock ≤ ROP stock≤ROP, thereby ensuring that 

low-stock notifications are generated with precision. Subsequently, Figure 7 presents the middleware 

testing procedures, which verify that stock notifications are transmitted accurately and that stock updates 

within the system are executed according to the predefined conditions. 

 Gambar 7 (a) Notification Testing  Gambar 7 (b) Stock Update Testing  

 

Figure 7(a) illustrates the middleware testing process for notifications within the index function of the 

NotiflistController, conducted using the white-box testing approach with basis path testing. The testing 

identified four independent execution paths corresponding to the scenarios of: normal stock levels, stock 

below the safety stock threshold, stock below the Reorder Point (ROP), and a combination of both 

conditions. The Cyclomatic Complexity value was calculated using the following formulas: 

 V(G) = E − N + 2 dan V(G) = P + 1 (2) 

In this formula: 

• E = the number of edges in the flow graph 

• N = the number of nodes in the flow graph 

• P = the number of predicates or logical decision points 

Both formulas yielded a value of 4, representing the four logical paths tested. Figure 7(b) presents the 

middleware testing for stock updates, which comprises two independent execution paths: the first path 

occurs when the Shopee stock update is successful and the data are saved. In contrast, the second path 

occurs when the update fails, resulting in no data being stored. The calculation of both formulas produced 

a value of 2, corresponding to the two logical paths evaluated. Figure 8 illustrates the synchronization 

results between purchase orders and Shopee stock, where stock quantities are automatically adjusted 

following changes in the recorded data. 

 Figure 8 (a) Purchase Order List  Figure 8 (b) Synchronized Shopee Stock 

Figure 8 (a) displays the purchase order list, which serves as the primary reference for adjusting 

product stock levels. Any modifications to this list automatically update the corresponding product stock 

quantities. Figure 8 (b) illustrates the Shopee stock, which is automatically adjusted to reflect these changes, 

whether they result from sales transactions or the receipt of incoming goods.  

 

4. Conclusion 

The daily automated scheduling system developed using a cron job successfully integrates Reorder 

Point (ROP) calculations, scheduled stock recording, cross-platform data synchronization, and notification 

delivery via the Twilio API into a single unified mechanism. The implementation of minimum stock 



SEMINAR NASIONAL CORISINDO  552 

 

UNIVERSITAS BUMIGORA – 12 SEPTEMBER 2025 

calculations, which take into account average daily sales and supplier lead times, enables alerts to be sent 

before inventory reaches critical thresholds. Integration with the Shopee API ensures that any stock changes 

in the system are immediately reflected on the marketplace, thereby maintaining stock consistency across 

all sales channels. Based on the implementation results, future development could focus on incorporating 

predictive sales trend analysis to support more optimal procurement planning. 

 

References 

[1] N. K. Akmal and M. N. Dasaprawira, “Rancang Bangun Application Programming Interface (API) 

Menggunakan Gaya Arsitektur GraphQL untuk Pembuatan Sistem Informasi Pendataan Anggota 

Unit Kegiatan Mahasiswa (UKM) Studi Kasus UKM Starlabs,” SITECH Journal, vol. 5, no. 1, pp. 

38–40, Jul. 2022. [Online]. Available: http://www.jurnal.umk.ac.id/sitech 

[2] J. vom Brocke, A. Hevner, and A. Maedche, “Introduction to Design Science Research,” in Design 

Science Research. Lecture Notes in Information Systems and Organisation, Cham: Springer, 2020, 

pp. 1–13. doi: 10.1007/978-3-030-46781-4_1. 

[3] V. T. Gumilang, “Perancangan Sistem Manajemen Stok Barang Berbasis Web pada PT X,” Jurnal 

Ilmu Komputer dan Sistem Informasi, 2023.  

[4] C. Grob and A.-Schriftenreihe, “Inventory Management in Multi-Echelon Networks: On the 

Optimization of Reorder Points,” [Online]. Available: http://www.autouni.de 

[5] Juwita and F. Rahmiyatun, “Penerapan Metode Economic Order Quantity (EOQ) dan Reorder Point 

(ROP) pada Pengendalian Persediaan Bahan Baku di UMKM Dapur Bunga Berbintang,” Jurnal 

Maneksi, vol. 12, no. 4, pp. 818–827, 2023. 

[6] R. A. Bimantoro, A. S. Fitrani, and S. Busono, “Sistem WhatsApp sebagai Notifikasi pada 

UMSIDA Farm Store Berbasis Web,” Journal of Internet and Software Engineering, vol. 1, no. 1, 

pp. 14–21, Jan. 2024, doi: 10.47134/pjise.v1i1.2248. 

[7] R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner’s Approach, 8th ed. New 

York: McGraw-Hill, 2014. 

[8] S. M. Pratama and R. Jefri, “Analisis Sistem Akuntansi Persediaan Barang Dagang pada UMKM 

MiMa Frozen Food,” Jurnal Pundi, vol. 8, no. 2, pp. 125–135, Dec. 2024, doi: 

10.31575/jp.v8i2.565. 

[9] T. F. Rahmadanti, M. Jajuli, and I. Purnamasari, “Klasifikasi Pengguna Shopee Berdasarkan 

Promosi Menggunakan Naïve Bayes,” in Proc. Seminar Nasional Teknologi Informasi dan 

Komunikasi (SENTIKA), Yogyakarta, Indonesia, 2021, pp. 81–89. 

[10] N. Saprido and R. Pahlevi, “Pengembangan Aplikasi Manajemen Stock Barang pada PT Pangkalan 

Gas Andika Mukti Berbasis Web,” Bulletin of Informatics (BIN), vol. 2, no. 1, pp. 67–77, Jul. 2024, 

ISSN: 3025-7417. [Online]. Available: https://ojs.jurnalmahasiswa.com/ojs/index.php/bin. 

[11] D. Fatmawati and D. A. Megawaty, “Aplikasi Supervisi Dosen Berbasis Web di Universitas XYZ,” 

J. Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 4, no. 3, pp. 270–283, 2023. 

[12] A. D. Saputro and A. A. Narwastika, “Implementasi White Box Testing dengan Teknik Basis Path 

pada Pengujian Form Peminjaman Sistem Aplikasi Perpustakaan,” in Proc. Seminar Nasional 

Teknologi Informasi dan Bisnis (SENATIB), Surakarta, Indonesia, Jul. 2023, p. 406. 

[13] D. Shenoy and R. Rosas, Problems and Solutions in Inventory Management. Cham: Springer 

International Publishing AG, 2018. doi: 10.1007/978-3-319-65696-0. 

[14] S. Sundaramoorthy, UML Diagramming: A Case Study Approach. CRC Press, 2022.  

[15] Safriza and H. Rohayani, “Implementation of Path Testing in White Box Testing for the National 

Public Transportation Driver Behavior and Competency Assessment System,” Lovelace Journal of 

Information System, Security, Education and Network Artificial Intelligence, vol. 2, pp. 1–16, 2024. 

 

 


