SEMINAR NASIONAL CORISINDO 547

Automatic Daily Scheduling System Using Cron Jobs
for Handicraft Business Management

Lidia Terecia, Sandy Kosasi, David

STMIK Pontianak, Pontianak, Indonesia

Correspondence : e-mail: lidiatereciaa@gmail.com

Abstract

Ensuring accurate stock information remains a challenge for handicraft business managers when
sales data from physical stores and e-commerce platforms are not updated simultaneously. Previous studies
have addressed stock synchronization but have yet to employ scheduling mechanisms for delivering daily
stock summaries integrated with sales data from both sources. This study developed an automated
scheduling system using a cron job to record and summarize daily stock movements, utilizing Shopee API
integration to ensure data consistency between the physical store and the online platform. The Reorder
Point concept was applied to determine restocking thresholds, while the Twilio API was used to send stock
summaries to managers via WhatsApp. The system was implemented using the Extreme Programming
method to accelerate adaptation to user requirements. The results indicated that the system consistently
provided daily stock reports, maintained data consistency across platforms, and supported procurement
decision-making. This approach offers a novelty by combining automated stock synchronization and
scheduled stock report distribution within a single integrated system.

Keywords: Cron Job, Shopee API, Reorder Point, Twilio API, Extreme Programming.

1. Introduction

Accurate inventory information is a cornerstone of operational reliability in omnichannel retail.
Stock data that is not synchronized across platforms can undermine the integrity of supply chains and
decision-making processes. Stock discrepancies between physical stores and e-commerce channels can
result in customer dissatisfaction and elevated order cancellation rates [1]. This often disrupts the customer
experience and directly affects merchant ratings on online marketplaces [2]. To prevent these issues, web-
based stock management systems offer centralized access for inventory control while reducing the
dependency on manual input [3].

However, not all solutions address the need for proactive restocking logic. This study proposes an
integrated mechanism that unifies stock synchronization, low-stock alerts, and scheduled reporting into one
system, offering a more comprehensive solution than previous approaches. With Shopee being one of the
most widely used marketplaces in Indonesia, integrating its merchant API becomes essential to ensure stock
consistency across platforms. [4]. API integration facilitates bidirectional data flow between the internal
system and the external marketplace, preventing mismatches caused by asynchronous updates [5].
Furthermore, the system logs every inventory mutation, providing a detailed historical record of item inflow
and outflow. [6].

To automate daily tasks, a cron job mechanism is implemented for generating scheduled stock
summaries. These tasks run periodically without requiring human input, allowing business owners to
receive timely reports [7]. Automated scheduling enhances consistency in reporting and minimizes the risk
of delays in identifying critical inventory issues [8]. The system adopts the Reorder Point (ROP) method,
a quantitative inventory control strategy that calculates when restocking should occur based on historical
sales and lead time [9]. By incorporating ROP into the system logic, product availability can be maintained
with greater accuracy and minimal manual oversight. Once stock levels reach a predefined minimum
threshold, the system triggers an automated alert via the Twilio API, which delivers messages to managers
or suppliers through WhatsApp [10]. This notification mechanism ensures timely procurement without
relying on staff to constantly monitor inventory.

2. Research Method

UNIVERSITAS BUMIGORA — 12 SEPTEMBER 2025

mailto:lidiatereciaa@gmail.com

SEMINAR NASIONAL CORISINDO 548

This research adopts the Extreme Programming (XP) approach, which emphasizes iterative
development and rapid responsiveness to user feedback. XP enables frequent delivery of working software,
ensuring that user needs are addressed as early as possible in the development cycle [11]. The development
process was divided into four core stages: planning, design, coding, and testing, each of which plays a
crucial role in aligning the system with actual user workflows. [12]. This structured methodology fosters
agility while maintaining system integrity across iterations. [13]. In the design phase, the Unified Modeling
Language (UML) was employed to visualize the system architecture, component interactions, and user
flows. Diagrams such as use cases, sequences, and activity charts were developed to guide implementation.
[14]. To validate system reliability, white-box testing was performed using the basis path technique. This
method ensures that every logical condition and execution path in the system is exercised and verified. [15].

Problem | Research Data | Systam
\ J Analyss | Ovjectives sollection | Dasgn

Developovant Whitebox |
Methodology Testing

Figure 1. Research Flow

The system development process begins with problem identification, aiming to understand user
needs and existing operational challenges. Subsequently, research objectives are clearly defined to guide
data collection through methods such as observation, interviews, or literature review. The collected data
supports system design, including UML diagrams, ERD construction, and database schema planning to
ensure structural integrity. A suitable development methodology is then applied, followed by white-box
testing; based on the results, the system is either deployed or returned to the design phase for refinement.

3. Results and Discussion

While many stock management systems emphasize synchronization and manual stock input, the
present study introduces a scheduled automation mechanism that transcends traditional implementations.
By leveraging the server-level cron job functionality, this system shifts from reactive stock monitoring to a
proactive, time-based process that operates independently of user initiation. The cron job not only schedules
report generation but also synchronizes stock mutation logs with reorder point evaluations, a layered
interaction rarely seen in previous works. This approach provides a novel convergence of time-based
automation, inventory analysis, and real-time notification, thereby transforming routine stock management
into an anticipatory decision-support system. Based on the analysis and research objectives, the workflow
and system interactions are illustrated in the use case diagrams presented in Figure 1.

: 3
: 2=
- . - R %
£y — -
rL T
- - i 3
- - - - e tue .&.
* L,
i N '
\'.‘ - ;'
i -
Figure 2(a) Cron Job Scheduling Flow Figure 2(b) Automated Reporting Process.

Figure 2(a) shows the scheduling and triggering sequence of the cron job, which determines when
the system initiates its operations and ensures that the process is executed only at predetermined times via
specific triggers. This mechanism ensures that task execution occurs in a consistent and structured manner
according to the defined cycle. Figure 2(b) illustrates the automated daily reporting process, which

UNIVERSITAS BUMIGORA — 12 SEPTEMBER 2025

SEMINAR NASIONAL CORISINDO 549

commences once the cron job is activated, starting from data processing, followed by report generation,
and concluding with delivery via email. This workflow guarantees that processed results are delivered
promptly without requiring manual intervention, thereby linking both processes to maintain seamless
system operation. Furthermore, the scheduled mechanism serves as a reference point for implementing the
Reorder Point (ROP) calculation to determine the optimal timing for inventory replenishment. The ROP
calculation is defined as follows:

ROP=(dxL)+SS (1)
In this equation:
e d=average daily sales
e [=lead time in days
o S5 = safety stock

The Reorder Point method facilitates the determination of the optimal timing for placing replenishment
orders based on the minimum safe inventory threshold. This calculation is derived from historical daily
sales data, estimated supplier lead times, and predefined safety stock parameters. As illustrated in Figure 2,
the ROP calculation is integrated with an API-based notification mechanism, which automatically transmits
alerts to management when inventory levels reach the reorder threshold. Distinctively, this mechanism
operates in tandem with a time-triggered automation process, wherein the ROP evaluation executes at
scheduled intervals without manual intervention, ensuring that alerts correspond accurately to the latest
inventory status recorded in the stock mutation log.

g H | Mensskseabadesmes | | Xuksomibel Kbk "Ceafem
Neaficasen List O & zotl

i ! x
i
-
3
: v 4
£ E \4 7N Halazs -
G|E Moclaznebl | o} vy wee [—e vastating - s | ’i.l
E = keafitsman N Lust tergpdan —
& FR0! [N

= p
38 Cwsnre [Mg

menage Tollo 9 eipoose dot
E AP \ dertasl dicrur

Figure 3. Flowchart of Twilio API Notification

As depicted in Figure 3, the process illustrates order placement via the Notification List page,
which is integrated with the Twilio API. Once the user confirms the order and the data is validated, the
system transmits a request to the server for processing. The back-end component subsequently invokes the
Twilio API to dispatch a confirmation message directly to the supplier. Then it returns a success response
to the front-end interface, thereby updating the order status. The automation of this sequence reduces delays
typically associated with manual supplier communication. At the same time, the integration within a single
notification interface ensures that message delivery, order verification, and stock threshold validation occur
without navigating multiple system modules.

In addition, the system incorporates an automatic stock recap that delivers daily inventory
summaries via WhatsApp, ensuring managers can monitor stock conditions without manual checking. A
stock mutation log is also maintained to record detailed inbound and outbound transactions, which supports
analysis of inventory movement and sales patterns. By combining notification, daily recap, and mutation
history in one mechanism, this stage highlights the novelty of the research since earlier works only focused
on synchronization or single-feature solutions. This comprehensive approach forms the basis for connecting
the notification process with subsequent synchronization activities. As shown in Figure 3, the integration
of the Shopee API enables automated synchronization of stock and order data between the internal system

UNIVERSITAS BUMIGORA — 12 SEPTEMBER 2025

SEMINAR NASIONAL CORISINDO 550

and the Shopee platform, ensuring that both environments consistently reflect the same inventory and
transaction information.

‘_ ,,
H |)

HIESS ; —l==aC

il i

5%

THE : = AL . L

i;-i o o .-, i A

; } - . .- o woven W &

Figure 4. Use Case Diagram of Shopee API Integration

As shown in Figure 4, the Shopee API integration enables real-time stock updates as soon as
incoming goods data are processed. This synchronization maintains data consistency between the internal
system and the sales platform, thereby preventing discrepancies in stock quantities. The workflow also
facilitates the seamless distribution of product information to the marketplace, ensuring that inventory
management remains organized and easily monitored. Following the Shopee API integration process, the
system records the receipt of incoming goods while simultaneously updating stock levels automatically, as

demonstrated in Figure 5.

- = (public tunction addaclion(Reguest $eequesl
(Bt At dala admn iogn Hitiigg chan sarean tok
b y ki
; fusrr = Auth::user();
x

Bilen -

Bust than knm 010 ffvdi',‘r:‘LJl %1 diten_id); .
$itom >stack + frequest squantity;

ck = $Minalstack;

sty ke Shoges

atestackDTO = rew UpdateTtenstackRogupstnTa
opee item id, $finalstock, fitem-sshopee mdel id);

1 Upaate
Fodmctomor | Shoges
— S $shopee - newn HeguestUpdateltemtockcontroller();
$shopeenesult = fshopee->updateTtenstock($shopeslipdatestockd™o);

Figure 5. Pseudocode for Incoming Goods

As illustrated in Figure 5, the testing of the incoming goods pseudocode was conducted to ensure that
the system is capable of accurately updating stock levels and recording item data. Utilizing the white-box
testing approach with basis path testing, four independent execution paths were identified to evaluate
various stock conditions, ranging from normal inventory levels to those meeting the criteria for both Safety
Stock and the Reorder Point (ROP). This testing ensures that the generated reorder data is accurate and
reliable. Subsequently, as shown in Figure 6, the system selects items whose stock levels are approaching
the minimum threshold and displays them in the low-stock notification list.

1 . y Easivaas Mrtal{uartitlant 0N Sotewestronin bt

Figure 6. Pseudocode for Notification List

UNIVERSITAS BUMIGORA — 12 SEPTEMBER 2025

SEMINAR NASIONAL CORISINDO 551

As depicted in Figure 6, the process begins with retrieving all item data from the database, followed
by evaluating two stock conditions. Four distinct logical paths emerge based on the combinations of the
conditions stock < safety stock, stock<safety stock, and stock < ROP stock<ROP, thereby ensuring that
low-stock notifications are generated with precision. Subsequently, Figure 7 presents the middleware
testing procedures, which verify that stock notifications are transmitted accurately and that stock updates
within the system are executed according to the predefined conditions.

()
S

'

Gambar 7 (a) Notification Testing Gambar 7 (b) Stock Update Testing

Figure 7(a) illustrates the middleware testing process for notifications within the index function of the
NotiflistController, conducted using the white-box testing approach with basis path testing. The testing
identified four independent execution paths corresponding to the scenarios of: normal stock levels, stock
below the safety stock threshold, stock below the Reorder Point (ROP), and a combination of both
conditions. The Cyclomatic Complexity value was calculated using the following formulas:

V(G)=E-N+2dan V(G)=P+ 1 2)
In this formula:
e E =the number of edges in the flow graph
e N = the number of nodes in the flow graph
e P = the number of predicates or logical decision points

Both formulas yielded a value of 4, representing the four logical paths tested. Figure 7(b) presents the
middleware testing for stock updates, which comprises two independent execution paths: the first path
occurs when the Shopee stock update is successful and the data are saved. In contrast, the second path
occurs when the update fails, resulting in no data being stored. The calculation of both formulas produced
a value of 2, corresponding to the two logical paths evaluated. Figure 8 illustrates the synchronization
results between purchase orders and Shopee stock, where stock quantities are automatically adjusted
following changes in the recorded data.

-}

Figure 8 (a) Purchase Order List Figure 8 (b) Synchronized Shopee Stock

Figure 8 (a) displays the purchase order list, which serves as the primary reference for adjusting
product stock levels. Any modifications to this list automatically update the corresponding product stock
quantities. Figure 8 (b) illustrates the Shopee stock, which is automatically adjusted to reflect these changes,
whether they result from sales transactions or the receipt of incoming goods.

4. Conclusion

The daily automated scheduling system developed using a cron job successfully integrates Reorder
Point (ROP) calculations, scheduled stock recording, cross-platform data synchronization, and notification
delivery via the Twilio API into a single unified mechanism. The implementation of minimum stock

UNIVERSITAS BUMIGORA — 12 SEPTEMBER 2025

SEMINAR NASIONAL CORISINDO 552

calculations, which take into account average daily sales and supplier lead times, enables alerts to be sent
before inventory reaches critical thresholds. Integration with the Shopee API ensures that any stock changes
in the system are immediately reflected on the marketplace, thereby maintaining stock consistency across
all sales channels. Based on the implementation results, future development could focus on incorporating
predictive sales trend analysis to support more optimal procurement planning.

References

(1]

(3]
(4]
(3]

(6]

(7]
(8]

[10]

[13]

[14]
[15]

N. K. Akmal and M. N. Dasaprawira, “Rancang Bangun Application Programming Interface (API)
Menggunakan Gaya Arsitektur GraphQL untuk Pembuatan Sistem Informasi Pendataan Anggota
Unit Kegiatan Mahasiswa (UKM) Studi Kasus UKM Starlabs,” SITECH Journal, vol. 5, no. 1, pp.
38-40, Jul. 2022. [Online]. Available: http://www.jurnal.umk.ac.id/sitech

J. vom Brocke, A. Hevner, and A. Maedche, “Introduction to Design Science Research,” in Design
Science Research. Lecture Notes in Information Systems and Organisation, Cham: Springer, 2020,
pp. 1-13. doi: 10.1007/978-3-030-46781-4 1.

V. T. Gumilang, “Perancangan Sistem Manajemen Stok Barang Berbasis Web pada PT X,” Jurnal
1lmu Komputer dan Sistem Informasi, 2023.

C. Grob and A.-Schriftenreihe, “Inventory Management in Multi-Echelon Networks: On the
Optimization of Reorder Points,” [Online]. Available: http://www.autouni.de

Juwita and F. Rahmiyatun, “Penerapan Metode Economic Order Quantity (EOQ) dan Reorder Point
(ROP) pada Pengendalian Persediaan Bahan Baku di UMKM Dapur Bunga Berbintang,” Jurnal
Maneksi, vol. 12, no. 4, pp. 818-827, 2023.

R. A. Bimantoro, A. S. Fitrani, and S. Busono, “Sistem WhatsApp sebagai Notifikasi pada
UMSIDA Farm Store Berbasis Web,” Journal of Internet and Software Engineering, vol. 1, no. 1,
pp- 14-21, Jan. 2024, doi: 10.47134/pjise.v1i1.2248.

R. S. Pressman and B. R. Maxim, Software Engineering: A Practitioner’s Approach, 8th ed. New
York: McGraw-Hill, 2014.

S. M. Pratama and R. Jefri, “Analisis Sistem Akuntansi Persediaan Barang Dagang pada UMKM
MiMa Frozen Food,” Jurnal Pundi, vol. 8, no. 2, pp. 125-135, Dec. 2024, doi:
10.31575/jp.v8i2.565.

T. F. Rahmadanti, M. Jajuli, and I. Purnamasari, “Klasifikasi Pengguna Shopee Berdasarkan
Promosi Menggunakan Naive Bayes,” in Proc. Seminar Nasional Teknologi Informasi dan
Komunikasi (SENTIKA), Yogyakarta, Indonesia, 2021, pp. 81-89.

N. Saprido and R. Pahlevi, “Pengembangan Aplikasi Manajemen Stock Barang pada PT Pangkalan
Gas Andika Mukti Berbasis Web,” Bulletin of Informatics (BIN), vol. 2, no. 1, pp. 67-77, Jul. 2024,
ISSN: 3025-7417. [Online]. Available: https://ojs.jurnalmahasiswa.com/ojs/index.php/bin.

D. Fatmawati and D. A. Megawaty, “Aplikasi Supervisi Dosen Berbasis Web di Universitas XYZ,”
J. Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 4, no. 3, pp. 270-283, 2023.

A. D. Saputro and A. A. Narwastika, “Implementasi White Box Testing dengan Teknik Basis Path
pada Pengujian Form Peminjaman Sistem Aplikasi Perpustakaan,” in Proc. Seminar Nasional
Teknologi Informasi dan Bisnis (SENATIB), Surakarta, Indonesia, Jul. 2023, p. 406.

D. Shenoy and R. Rosas, Problems and Solutions in Inventory Management. Cham: Springer
International Publishing AG, 2018. doi: 10.1007/978-3-319-65696-0.

S. Sundaramoorthy, UML Diagramming: A Case Study Approach. CRC Press, 2022.

Safriza and H. Rohayani, “Implementation of Path Testing in White Box Testing for the National
Public Transportation Driver Behavior and Competency Assessment System,” Lovelace Journal of
Information System, Security, Education and Network Artificial Intelligence, vol. 2, pp. 1-16, 2024.

UNIVERSITAS BUMIGORA — 12 SEPTEMBER 2025

