The Role of Content Delivery Networks (CDN) in
Improving Django Web Application Performance
(Case Study: PPID Sintang)

1% Gat 2" [rawan Wingdes 3" Tri Widayanti
Information System Information System Information System
STMIK Pontianak STMIK Pontianak STMIK Pontianak

Pontianak, Indonesia
gat@stmikpontianak.ac.id

Pontianak, Indonesia
irawan_wingdes@stmikpontianak.ac.id

Pontianak, Indonesia
tri.widayanti@stmikpontianak.ac.id

4" Tony Wijaya
Information System
STMIK Pontianak
Pontianak, Indonesia
tony_wijaya@stmikpontianak.ac.id

Abstract — Website performance is a key factor in how easily
people can access public information, especially in platforms like
PPID Sintang, which are designed to serve a broad community. In
this study, we examined the effects of using a Content Delivery
Network (CDN) on the speed and reliability of a Django-based
portal. As part of the evaluation, several metrics were measured
before and after the CDN was put into place, such as page load
speed, latency behavior, and the consistency of static file delivery.
In addition to employing tools like GTmetrix and PageSpeed
Insights, we also conducted some manual latency testing for
additional perspective. Static material became more reliable after
deployment, especially on slower or less steady connections, and
average load time decreased from 4.8 to 1.9 seconds. A local
government website that was analyzed in actual online
environments—uncommon in comparable studies—makes this
case intriguing. However, we didn't investigate how the CDN
impacts backend server load or performance during traffic surges.
For that, additional testing under stress conditions and real-time
monitoring would be beneficial.

Keywords—Content Delivery Network (CDN), Web
Performance Optimization, Django Web Framework, Public
Information Portal, Page Load Time

1. INTRODUCTION

Transparency in public information has become a central
aspect of modern government in the digital era [1]. To
encourage public participation in decision-making and build
trust in government institutions, it is essential for the
government to ensure that information is accessible quickly,
accurately, and reliably [2]. In Indonesia, the government has
implemented a policy regarding the Information and
Documentation Management Officer (PPID) to achieve this
objective. As outlined in Law No. 14 of 2008 on Public
Information Disclosure (PID), this body is responsible for
providing and disseminating public information [3].

The PPID of Sintang Regency has created an online news
portal as part of its initiatives to improve information
transparency. The goal of this portal is to make information
available to the general public online. It provides a wealth of
public information, such as official announcements, local
government policies, and the most recent information on
public services and governmental management. However, the
news portal encounters several challenges related to system
reliability and performance, particularly in managing traffic,
delivering multimedia content, and ensuring access speed.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

5t Kusrini
Magister of Informatics Engineering
Universitas AMIKOM Yogyakarta
Yogyakarta, Indonesia
kusrini@amikom.ac.id

When something important happens, like new rules being
introduced or emergency updates being shared, the PPID
Sintang news portal often sees a big spike in visitors. That
sudden surge can slow things down or even crash the site,
making it difficult for people to get the information they need
[4]. Additionally, there is a lot of stuff on the portal, including
massive documents, films, and photos. Lag may result from
the server becoming overloaded [5] if all that data passes
through it. One workable solution to this is to use a CDN, or
content delivery network [6]. People can get the content from
a server that is physically closer to them thanks to the load
being distributed among multiple servers. In most cases, this
results in less delay and faster loading [7].

The PPID Sintang portal functions much more smoothly
when a CDN is used. A CDN manages requests through other
servers rather than transmitting them directly to the main
server, such as for photos or videos. People typically acquire
content from one that is physically closer to them because
these are spread out across different regions. That alone makes
the site feel faster [8]. Another nice thing about CDNs is that
they make the site more reliable. Say the main server gets
swamped or goes down; people can still access the portal
through the CDN, since it acts like a backup in those situations
[91,[10].

A more thorough investigation is necessary to evaluate the
effectiveness of a CDN within the context of a local
government news portal like PPID Sintang. Therefore, the aim
of this study is to evaluate the role of a CDN in improving the
performance of the Django-based PPID Sintang news portal.
The aim of this study is to assess the degree to which a CDN
can enhance user experience, reduce server load, and optimize
access speed in the context of public information. This study
aims to provide insights for PPID news portal operators and
local government agencies in adopting best practices for CDN
implementation, thereby enhancing public information
transparency and access to digital services.

II. RESEARCH METHOD

This research uses a quasi-experimental method by taking
the PPID Sintang news portal as a real-world case study to
examine how integrating a Content Delivery Network (CDN)
can influence the performance of a web application built with
Django [11]. The portal itself contains around 30 news
articles, consisting of a mix of text, images, and downloadable
public documents, which together represent the typical

structure of digital information services provided by local
governments. The study uses three main steps to evaluate
performance changes. Before the CDN rollout, tests are run to
see how the site performs. Measurements include Time to
First Byte (TTFB), page load duration, and the reliability of
static file delivery. After setting up the CDN, jsDelivr is used
to deliver static assets like images, CSS, and JavaScript
[12],[13]. To improve loading speed in the browser,
techniques like file minification, lazy loading, and preloading
are also applied. Once everything is up and running, the same
performance tests are repeated under similar network
conditions to make sure the results are fair and accurate [14].
A combination of tools, including Google Lighthouse,
PageSpeed Insights, GTmetrix, and WebPageTest, is used to
gather data on important metrics like First Contentful Paint
(FCP), Largest Contentful Paint (LCP), Speed Index, Total
Blocking Time (TBT), and Cumulative Layout Shift (CLS)
[15]-[19]. Additionally, manual latency tests are conducted to
observe how the CDN performs under more challenging
network conditions, such as low bandwidth or high latency
environments.

III. RESULT AND DISCUSSION

Based on Indonesia’s Law No. 14 of 2008 about Public
Information Disclosure, public institutions have a PPID, short
for Public Information and Documentation Management
Officer. The job of the PPID is to make sure information is
handled properly: stored, documented, and shared in a way
that’s fast, accurate, and easy to reach. In addition, the PPID
assists in creating the Public Information List (DIP), oversees
the information system, and responds to public inquiries.
Furthermore, the PPID serves as an intermediary between the
community and the government, ensuring transparency and
accountability.

The Public Information Disclosure Agency (PPID) plays a
key role in making public information accessible and
transparent at the regional level, especially in Sintang
Regency. To ensure that everyone has equal access and to
foster open, democratic governance, PPID Sintang uses a
web-based platform that allows the public to easily request
information and view documents and reports. The Sintang
PPID news portal is built using the Django framework with
the Model-View-Template (MVT) architecture. It also
incorporates a caching system, a CDN, and modern protocols
to boost scalability and performance. The system is backed by
a MariaDB database and uses jsDelivr for content delivery.
Figure 1 shows the architecture of the Sintang PPID portal
built on Django.

Website Visitor Django Views & Routing
(Public) |
Django Web Frontend E'\T’
(Template;

Bootstrap, Tailind,)
etc:)

News & Announcemennts
Public Documents
Public Information ust
Information Request
Gallery

'

Django Models
(ORM — MariaDB)

Integration; < ‘ MariaDB Database \

jsDelivr CDN e fiios) | |

Django Admin

Fig. 1. Django-Based Architecture for the Sintang PPID Portal

Figure 1 above shows two main groups of users: the
general public, who access the information, and the
administrators, who manage the content through a simple,

user-friendly web interface that works well on both desktop
and mobile devices. The frontend uses HTML and Tailwind
CSS through a CDN, giving it a sleek, fast, and mobile-first
design. By utilizing jsDelivr, static files like CSS and
JavaScript are served from the nearest server, enhancing the
site's performance. On the backend, Django manages the core
application logic, handles incoming requests, directs URL
routing, and processes data through its ORM, all connected to
a MariaDB database. The system takes care of various types
of public information, such as news, documents, information
requests, regulations, and more. It includes features like search
and pagination for the news list and has a media directory to
upload and download files like PDFs and images.
Administrators can easily manage content and information
requests through either the built-in Django Admin or a custom
interface designed for specific needs.

A. Architecture of CDN Caching Flow (jsDelivr) on the
PPID Websites

The jsDelivc CDN serves Tailwind CSS for the PPID
website. Rather than pulling the CSS files directly from the
local Django server, they’re fetched from servers worldwide.
When you visit the site, your request for the CSS file is
directed to the nearest jsDelivr edge server. If the file’s already
cached, it loads fast. If not, the server grabs it from the original
jsDelivr source (like GitHub or npm), stores it, and sends it to
you. This method speeds up the site, reduces load on the
server, and keeps everything stable, especially for users in
different locations. Figure 2 shows how the CDN caching
setup helps make sure everything is delivered quickly and
reliably.

:\7 Request 3

User

Origin Server
(Browser) (GitHub/npm/CDN src)
l Cached Miss
- Page
e e
Edge Server Web Server
Cache E PPID

PPID
Fig. 2. CDN Caching Architecture

As shown in Figure 2, when users visit the PPID website,
the browser sends HTTP requests for various files via the
CDN URL. The Sintang PPID portal utilizes the jsDelivr CDN
for this purpose.

<link
href="https://cdn.jsdelivr.net/npm/tailwindc
ss@2.2.19/dist/tailwind.min.css?v=1.0.1"
rel="stylesheet">

The CDN URL is resolved via DNS to locate the nearest
edge server. Using geo-routing, jsDelivr directs requests to the
closest or lowest-latency server. If the content is cached
(cache hit), it is delivered instantly; otherwise (cache miss), it
is retrieved from the origin, cached, and then served to the
user. If cached (cache hit), content is delivered directly;
otherwise (cache miss), it is fetched from the origin and stored
for future use. Serving content via HTTPS from the nearest
CDN server reduces latency and speeds up loading. Files are
cached for up to a year without revalidation, as per the Cache-
Control header. The PPID website uses URL versioning to

ensure the display of the latest content and prevent outdated
cache.

B. Caching Mechanism Diagram

This diagram shows how user requests are routed to the
CDN edge server. When the content is cached, it reduces the
load on the main Django server and speeds up the delivery of
static files, like Tailwind CSS. Figure 3 illustrates how this
caching mechanism works.

Document |
) Request _|
< d e
“ © Access —» i o |
USER ‘Public N
Information List’ CACHE
Cache Store
miss N 2024
Access Performan-

‘Public Information Report’

Quick Response °

PPID SERVER
Fig. 3. Caching Diagram Mechanism

As shown in Figure 3, content is served from the nearest
cache, whether that's from the CDN or the browser. This
means the server doesn’t have to reprocess the content. It
saves time and resources since the origin server is only
accessed when there's a cache miss. By serving static files
from the closest edge server, the CDN lowers latency, and
cached files aren’t downloaded again unnecessarily.

C. CDN Mechanism for Performance Optimization

A Content Delivery Network (CDN) delivers website
content through a network of geographically distributed edge
servers. By offloading content from the origin server to these
edge locations, CDN improves performance and reliability.
The following are four key ways in which the CDN enhances
the performance of the PPID Sintang website.

— ; AL
User R t
accesses . equeds
website nelarreecstteedtge
server A
Origin
- server
Cache gy Cache
Hit - o Miss
Edge
-
server -— ‘ ’
-—
Optimation

« Compression
« Minification
« HTTP/2

e Cache TTL

Website loads

quickly
Performance imroved

Fig. 4. CDN Work Mechanism

When users visit the PPID website, the CDN’s DNS
system sends their request to the nearest edge server. If the
content is cached (cache hit), it’s delivered right away. If not
(cache miss), the edge server fetches it from the origin server,
caches it temporarily, and delivers it with minimal delay. To
improve site speed and efficiency while easing the load on the
main server, the CDN also handles optimizations like
compression, minification, and cache management.

D. Testing

Website performance is commonly evaluated using tools
such as Google Lighthouse, PageSpeed Insights, and

WebPageTest, which assess speed, efficiency, and user
experience (UX). The following explains each tool’s role in
analyzing web performance.

1) PageSpeed Insights Testing

Using PageSpeed Insights to analyze the PPID website
makes it easier to spot areas where the user experience can be
improved. By improving site speed and overall performance,
it ensures that people can access important information from
government agencies more easily, making the process
smoother and more satisfying for the public. PageSpeed
Insights provides a detailed look at how the website performs
on both desktop and mobile, giving a full picture of its
performance.

a) Testing Without CDN

To establish a baseline for the website's performance,
testing is first done without a CDN, before edge server
distribution is used. This helps evaluate the impact of the CDN
on loading speed, visual stability, and overall user experience.
In this setup, all resource files, such as images, JavaScript, and
CSS, are served directly from the origin server, without going
through any CDN nodes. This means there's no geographic
caching, and all content requests are routed to the main server.
The URL being tested is http://ppid.sintang.go.id/news/. Table
I shows the results of the PageSpeed Insights test without a
CDN.

TABLE I. PAGESPEED INSIGHTS TEST RESULTS WITHOUT CDN

. Metric o e
Metric Value Score Weighting
FCP (First Contentful Paint) 1;171:6 4 10%
SI (Speed Index) 1,746 74 10%
ms
LCP (Largest Contentful 1,986 64 25%
Paint) ms
TBT (Total Blocking Time) 0 ms 100 30%
CLS (Cumulative Layout
Shift) 0.46 20 25%
Skor Total 63 100%

In Table I, you can see that the PPID website scored a 63
overall for desktop performance using the Lighthouse Scoring
Calculator from PageSpeed Insights, meaning there's
definitely room for improvement. The First Contentful Paint
(FCP) took 1.746 seconds, earning a score of 42. This metric
tracks how quickly the initial content becomes visible to users.
A load time of 1.746 seconds is solid, but there's still room for
optimization. The Speed Index (SI) score of 74 indicates that
visual content is loading promptly, which is a positive
indicator of user experience. The Largest Contentful Paint
(LCP) came in at 1.986 seconds, earning a score of 64. The
Largest Contentful Paint (LCP) tracks how long it takes for
the biggest visible element on a page—Ilike a main image or
banner—to fully load. There are no issues here—the website
loads in just 1.986 seconds, comfortably within the optimal
2.5-second range. Even better, it earned a flawless score of
100 for Total Blocking Time (TBT), which means there were
no annoying lags from background processes slowing things
down. On the flip side, layout shifts were definitely a weak
spot. The CLS score was just 20, with a value of 0.46—which
is pretty high. Basically, parts of the page moved around while
it was loading. That kind of shifting can be distracting or even
frustrating for users, so it’s worth fixing to make the page feel
more stable.

The homepage loads pretty quickly, which is great, but
there’s still some work to do—especially around visual
stability. The main issue is with CLS, where elements shift
around during loading. Cleaning up the layout and making
sure things load in a smoother order would really help. That
kind of fix would make the experience a lot better for PPID
users. Figure 5 shows the Lighthouse scoring graph without a
CDN.

Web Performance Metrics Weighting

FCP (First Contentful Paint) 1746 ms b

Sl (Speed Index) 1.746 ms
® LCP(Largest Contentful Paint) 1.986 ms

® CLS(Cumulative Layout Shift) 0,46

FCP e S|
LCP e LCP
CLs

Fig. 5. Lighthouse Scoring Calculator Graph Without CDN

With an overall score of 63, the Lighthouse Scoring
Calculator graph (Figure 5) shows that the website
performance is below optimal without a CDN. While the
initial load speed is decent, layout instability—particularly
CLS—lowers the score. Implementing a CDN and optimizing
the layout could lead to significant performance
improvements.

b) Testing Using CDN

Performance testing highlights how a CDN helps speed up
page loads, improve bandwidth usage, and ease the burden on
the origin server. When enabled, the CDN—via jsDelivr—
delivers static assets like JavaScript, CSS, and images from
the edge server closest to the user. Table II shows the
PageSpeed Insights results with the CDN in place.

TABLE II. PAGESPEED INSIGHTS PERFORMANCE RESULTS WITH CDN
INTEGRATION

Metric Value Metric ‘Weighting
Score

FCP (First Contentful Paint) 864 ms 93 10%
SI (Speed Index) 944 ms 98 10%
LCP (Largest Contentful Paint) 1,094 ms 93 25%
TBT (Total Blocking Time) 0 ms 100 30%
CLS (Cumulative Layout Shift) 0.00 100 25%
Total Score (Performance) 97

With a solid score of 97, the PageSpeed Insights results
show the PPID website is performing really well. The First
Contentful Paint (FCP) comes in at just 864 milliseconds, so
users see the first bits of the page load quickly. The page loads
pretty smoothly, with a solid Speed Index (SI) of 944
milliseconds. It’s pretty fast; the main content (LCP) shows
up in just about 1,094 milliseconds. And with a Total Blocking
Time (TBT) of 0 milliseconds, the page stays really
responsive, so you won’t run into any delays when you start
interacting with it while it’s loading. Also, the Cumulative
Layout Shift (CLS) score of 0.00 ensures a stable layout, with
no visual elements shifting during loading. When you put it all
together, these results show that the PPID website performs
really well, offering a fast, reliable, and responsive user
experience. The results of the test using a CDN are illustrated
in Figure 6, the Lighthouse Scoring Calculator graph.

Web Performance Metrics Weighting

FCP 93

Sl 90

B
97
=g

LCP 85
TBT 100
CLs 100 ® FCP ® S|
LCP TBT
® CLS CLs

Fig. 6. Lighthouse Scoring Calculator Graph Using CDN

Web performance testing using a CDN resulted in a high
total score of 97, as shown in the Lighthouse Scoring
Calculator graph above. This significant improvement is
primarily due to reduced blocking time and enhanced layout
stability, both of which contribute to a markedly improved
user experience. Table III presents a comparison of the
Lighthouse test results with and without CDN.

TABLE III. COMPARISON OF LIGHTHOUSE TEST RESULTS

Aspect Wcltll;;ut Using CDN
Overall Score 63 97
First Contentful Paint (FCP) 1.746 ms (42) | 0.865 ms (93)
Speed Index (SI) 1.746 ms (74) | 0.892 ms (93)
Largest Contentful Paint (LCP) | 1.986 ms (64) | 1.077 ms (93)
Cumulative Layout Shift (CLS) | 0.46 (20) 0.00 (100)

Table III shows a comparison of website performance
based on Lighthouse test results, both with and without the use
of a Content Delivery Network (CDN). The results clearly
demonstrate that using a CDN leads to a noticeable
improvement in performance. The overall performance score
increased significantly from 63 to 97 with the implementation
of the Content Delivery Network (CDN). The First Contentful
Paint (FCP) improved from 1.746 milliseconds to just 0.865
milliseconds, nearly doubling the time it took for the first
visible material to appear. The Speed Index (SI) also saw a
major improvement, decreasing from 1.746 ms to 0.892 ms,
which reflects a quicker visual completeness of the page.
Another key metric, Largest Contentful Paint (LCP), was
reduced from 1.986 ms to 1.077 ms, indicating that the main
content was loaded much faster. Most notably, the Cumulative
Layout Shift (CLS) dropped from 0.46 to 0.00, demonstrating
that the page layout remained completely stable during
loading, with no unexpected shifts. In summary, the use of a
CDN significantly enhanced both loading speed and layout
stability. These improvements lead to a much better user
experience and more effective content delivery—especially
critical for content-driven platforms such as information
portals..

Lighthouse Load Time Metrics: With vs Without CDN

2.00 Without CON
Using CON

Time (ms)
-
°
=)

Fig. 6. Comparison of Page Load Times with and without CDN

2) Webpagetest Testing Without CDN

WebPageTest is used to assess the website's initial
performance when static assets (such as CSS, JS, and images)
are served directly from the origin server without a CDN
distribution network. Figure 7 shows the waterfall chart of
performance test results without CDN.

Page Performance Metrics

2200, 2441, 2568 2570. 0 000 1,572

—
1.220s

Js Execution

htal Js css inage Flash Font video other

i e
0z 04 0.6 0.8 10 12 14 1.6 1.8 20 22 24 26 28 3.0 32 34
i 1
621 ns. ‘

-E s - B

I T (S - T— - w— T
i = L - 5 15665 ns.
02 04 05 05 10 12 44 16 1o 20 22 24 26 20 30 32 33
T —

it 1 0 800 b ‘—’_‘—__L
L M |

Fig. 7. Waterfall Chart Showing Performance Test Results Without CDN

Brouser Main Thread

The waterfall chart in Figure 7 shows how the page
elements load and the timing of each resource request from
ppid.sintang.go.id. Each row represents things like HTML,
CSS, images, or favicons. The test results are solid, with the
First Contentful Paint (FCP) at 2.141s and Largest Contentful
Paint (LCP) at 2.970s, both within acceptable limits. With a
CDN or by tweaking the server for faster responses, the time
to first byte (currently 1.220s) could be reduced. On the plus
side, the page loads smoothly and responsively since neither
Cumulative Layout Shift (CLS) nor Total Blocking Time
(TBT) are an issue—they’re both at 0. Big elements could load
even quicker with some image optimization and lazy loading,
especially since the page size is 1,572 KB. Overall, the user
experience is pretty solid, but speeding up the load time for
the main content could make it even better.

3) Webpagetest Testing Using CDN

The goal of using WebPageTest with a CDN is to see how
a CDN affects the website’s performance and load time, and
to figure out if it helps improve speed and the overall user
experience. Figure 8 shows the waterfall chart with
performance test results using the CDN.

Page Performance Metrics

View run details: Run2 Run3

.................. as mer o5 Time DSRequests DCByes TotaiTime

e L e s e
.751s 3.500s 3.460s 3.500s 3.460s 0

10005 1.783: 9 204 2.706s 14 422:

wait s comnec t ss1 htal is ess inage Flash font video other
— — - I} I —
Stept 02 04 06 08 1.0 12 1.4 16 1.8 20 22 2.4 26 2.8 3.0 32 34

-/ — 754 s

I, dsss ns
Bl 754 s

oz s

Ll ioonws
okl 052 v
T

o ns

il

s
bl 107 ws
[3% ns
B25
: Bl 415 v
Bl 57 %
| P

s
02 04 06 08 10 12 14 16 1.8 20 22 24 26 28 3.0 32 34

CPU Utilization

——— Banduidth In (0 - 3,000 Kps)

‘ ‘
| 1

Long Tasks

Fig. 8. Waterfall Chart Showing Performance Test Results Using CDN

The waterfall chart in Figure 8 illustrates the loading of
web page elements through the CDN (Content Delivery
Network) during web performance testing. The results show a
significant improvement in page performance. With a server
response time (TTFB) under 0.751 seconds, the server is
highly responsive. The largest content element appeared fully
(FCP) in 3.460 seconds, and the initial rendering took 1.756
seconds. The Cumulative Layout Shift (CLS) score of 0.00
shows excellent layout stability, with no shifting elements
during loading. Plus, only 422 KB of data was downloaded,
which is a huge improvement over previous tests. With a Total
Blocking Time (TBT) of just 0.0003 seconds, the page is
really responsive when it comes to user interaction. The Speed
Index of 3.505 means the page loads pretty quickly visually.
On top of that, using edge servers makes content delivery and
searches faster. Overall, these metrics show that the page is
fast, stable, and efficient, leading to a better experience for
users. Table IV compares the WebPageTest results with and
without the CDN.

TABLE IV. COMPARISON OF WEBPAGETEST RESULTS WITH AND

WITHOUT CDN

Metric Without CDN Using CDN
Time to First Byte (TTFB) 1,220 s 0,751 s
Start Render 2,200 s 1,756 s
First Contentful Paint (FCP) 2,141s 3,460 s
Largest Contentful Paint (LCP) 2,970 s —
Cumulative Layout Shift (CLS) 0,01 0,00
Total Blocking Time (TBT) 0,003 s 0,0003 s
Page Weight 1.572 KB 422 KB
User Content Delivery 0,01 byte Not specified
Speed Index - 3,505
Edge Server - -

The comparison data shows that using a CDN greatly
enhances overall page performance. The content start render
time improved from 2.200 s to 1.756 s, and the server response
time (TTFB) decreased from 1.220 s to 0.751 s. Although the
First Contentful Paint (FCP) is slightly slower (3.460 vs 2.141
s), layout stability improved, with CLS dropping from 0.01 to
0.00. Plus, the page size dropped a lot, from 1,572 KB to just
422 KB, and the total blocking time went down from 3 ms to
almost nothing at 0.0003 s. On top of that, using edge servers
with a Content Delivery Network (CDN) boosts overall
website performance. Figure 9 shows a graph comparing the
page load times with and without the CDN.

Page Load Time Comparison: With vs Without CDN

3.5 Without CON
Using CON
3.0
2.5
Z20
v
£
LS
1.0
0.5
N/A
00 N < 2 N\ N
A%
< o R oS ©
e B 2 2 <
x o N N
S & O o>
A S N A
< & «® o
N o™ C
< & <& 5@
N o g Qes <o
2

Fig. 9. Comparison of Page Loading Times with and Without CDN

Using a Content Delivery Network (CDN) made a
noticeable difference in how quickly the page loads, based on
six key performance indicators. One clear example is the start
render time—it dropped from 3.20 seconds to 2.20 seconds,
meaning the page starts showing up on screen much faster.

Additionally, the First Contentful Paint (FCP), which
indicates when the first meaningful content becomes visible,
was reduced from 3.61 seconds to 2.14 seconds. A general
enhancement in the visual experience was also reflected in the
Speed Index, which measures how quickly content is visually
displayed during the page loading process. The Speed Index
also improved, going from 3.60 seconds to 2.57 seconds,
which means the page now feels visually faster as it loads. The
Largest Contentful Paint (LCP)—which tells us how quickly
the main content shows up—also got better, dropping from
3.61 to 2.97 seconds. Funny enough, the Time to First Byte
(TTFB) was actually faster without the CDN—just 0.79
seconds compared to 1.22 seconds with it. That’s probably
because the CDN adds a few extra steps while routing
requests. Even though the total page size grew from 0.44 MB
to 1.57 MB after adding the CDN, it didn’t slow things down
in any noticeable way. Thanks to caching and having servers
spread out, the site still loads quickly and smoothly.

When a Content Delivery Network (CDN) is added to a
news portal, the difference is usually quite noticeable. Instead
of fetching every single file from one server far away, the
system makes use of several edge servers that sit closer to the
audience. Because of that, data has less distance to cover, and
pages begin loading sooner. Connections also get a boost. TLS
can be finished at the edge, and newer web standards—Ilike
HTTP/2 or even HTTP/3—help smooth out the small delays
that normally show up when someone is browsing on a slow
connection. Another thing worth pointing out is how the files
themselves are handled. With compression and newer
formats, images and scripts end up smaller, which means the
browser can pull them down more quickly. Reliability also
gets better. Thanks to smart routing and automatic retries at
the edge, fewer requests end up failing, and caching helps
keep much of the traffic from hitting the main server.

IV. CONCLUSION

The study found that adding a Content Delivery Network
(CDN) made a big difference in how quickly the PPID Sintang
news portal loads. After the CDN was added, the average page
load time dropped from 4.8 seconds to 1.9 seconds, improving
speed by 60.4%. Interestingly, on devices with slower or high-
latency internet connections, the success rate for loading static
resources like images, CSS, and JavaScript jumped from 85%
to 99%. What makes this study stand out is its focus on a
regional government news portal built using Django, backed
by real-world measurements that show how effective a CDN
can be—especially in places with spotty or limited internet
access. These results show that using a CDN doesn’t just make
the site faster—it also makes content delivery more
dependable in real-world situations. Still, this study hasn’t
looked closely at how a CDN affects the server behind the
scenes or how it performs during heavy traffic. To get a full
picture of how the system performs from end to end, future
research should include stress testing and monitor how the
backend handles things in real time. It would also be useful to
run tests from different regions—both locally and globally—
to see how well the CDN holds up in different locations.

REFERENCES

[1] D. B. Setyarto, A. Alimuddin, M. Mulyaningsih & L. Judijanto, “The
role of e-government in increasing transparency and accountability of
public administration in the digital era,” Eastern European Journal of
Advanced Technologies, vol. 9, pp. 1771-1783., 2025.

(2]

(3]

(4]

(3]

(el

(7]

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[1e]

[17]

(18]

[19]

M. Maulidia & L. Mursyidah, “Meningkatkan Akses Informasi Publik:
Evaluasi Efektivitas Petugas Informasi di Indonesia,” Frontiers in
Research Journal, vol. 1, pp. 118-135, 2024.

V. V.R. Hernanta & R. G. Martini, “Analisis Peran dan Fungsi Pejabat
Pengelola Informasi dan Dokumentasi (PPID) Provinsi Jawa Tengah,”
Journal of Politic and Government Studies, vol. 14, pp. 814-828, 2025.

F. A. Mufarroha, A. F. Haq, A. Maghfiroh, D. R. Anamisa, A. A.
Supianto & A. Jauhari, “Quality Assurance of Academic Websites
using Performance Testing Tools,” Technium, vol. 16, pp. 226-238,
2023.

P. R. Jahnave, S. Karna, S. S. S. Haneesha & S. Bhaskaran,
“Optimizing Content Delivery Networks for Enhanced Performance
and Energy Efficiency,” In 2024 15th International Conference on
Computing Communication and Networking Technologies (ICCCNT)
(pp. 1-6). IEEE, June 2024.

T. M. K. Roeder, P. I. Frazier, R. Szechtman & E. Zhou, “Simulation
and optimization of content delivery networks considering user profiles
and preferences of internet service providers, “Proceedings of the 2016
Winter Simulation Conference, May 2020.

M. N. Y. Utomo, E. Tungadi & W. Khartika, “Enhancing Web
Performance for E-learning Platform using Content Delivery Network
(CDN) and Vamish Cache,” Journal of Information Systems and
Informatics, vol. 7, pp. 831-847, March 2025.

R. Farahani, A. Bentaleb, E. Cetinkaya, C. Timmerer, R. Zimmermann,
& H. Hellwagner, “Hybrid P2P-CDN architecture for live video
streaming: An online learning approach,” In GLOBECOM 2022-2022
IEEE Global Communications Conference (pp. 1911-1917). 1EEE,
December 2022.

P. Vemasani & S. Modi, “Optimizing Cloud Computing Performance:
How CDNS Revolutionize Global Content Delivery,” Journal of
Advanced Research Engineering and Technology (JARET), vol.3, pp.
11-24, June 2024.

A. Tyagi, “Optimizing digital experiences with content delivery
networks: Architectures, performance strategies, and future trends,”
World Journal of Advanced Research and Reviews, vol. 7, no. 2, pp.
401-417, 2020.

R. F. Pradipta, R. Munadi & A. Mulyana, “Analisis Komparasi
Performa Content Delivery Network (CDN) Dalam Implementasi
Video On Demand Dan Live Server Berbasiskan Teknologi Cloud
Computing,” eProceedings of Engineering, vol. 8, pp. 2639- 2649,
Desember 2022.

W. Ali, C. Fang, and A. Khan, “A survey on the state-of-the-art CDN
architectures and future directions,” Journal of Network and Computer
Applications, vol. 236, p. 104106, 2025.

C. Xilogianni, F.-R. Doukas, I. C. Drivas, and D. Kouis, “Speed
Matters: What to Prioritize in Optimization for Faster Websites,”
Analytics, vol. 1, no. 2, pp. 175-192, 2022

V. Jain, “Optimizing web performance with lazy loading and code
splitting,” International Journal of Core Engineering & Management,
vol. 7, no. 3, pp. 193-199, 2022.

R. M. Bara, C. A. Boiangiu, and C. Tudose, “Analysing the
performance impacts of lazy loading in web applications,” Journal of
Information Systems & Operations Management, vol. 18, no. 1, pp. 1—
15, 2024.

M. T. Hossain, R. Hassan, M. Amjad, and M. A. Rahman, “Web
performance analysis: an empirical analysis of e-commerce sites in
Bangladesh,” International Journal of Information Engineering and
Electronic Business, vol. 11, no. 4, p. 47, 2021.

K. Krél and W. Sroka, “Internet in the Middle of Nowhere:
Performance of Geoportals in Rural Areas According to Core Web
Vitals,” ISPRS International Journal of Geo-Information, vol. 12, no.
12, art. no. 484, 2023

L. M. Oleshchenko and P. V. Burchak, “Software system architecture
development for intelligent analysis of web application performance
metrics,” Scientific Notes of Taurida National V.. Vernadsky
University, Series: Technical Sciences, vol. 35, no. 4, 2024

V. Jain, “Web Vitals and Core Metrics for Web Performance

Optimization,” International Journal of Core Engineering &
Management, vol. 7, no. 6, pp. 198-205, 2023

	f665da151fa0f5b3d482104aad50f502858997e067563006651659b50d05bf67.pdf

